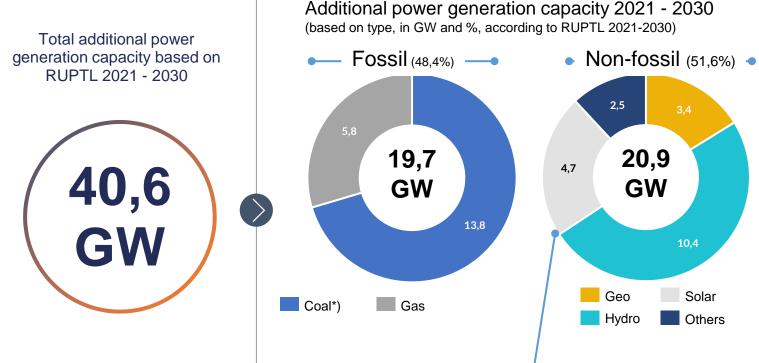

Solar Energy Development in Indonesia

April 7th, 2022

Director of Mega Project & Renewable Energy



PLTS Pylau Messa, Nusa Tenggara Timur

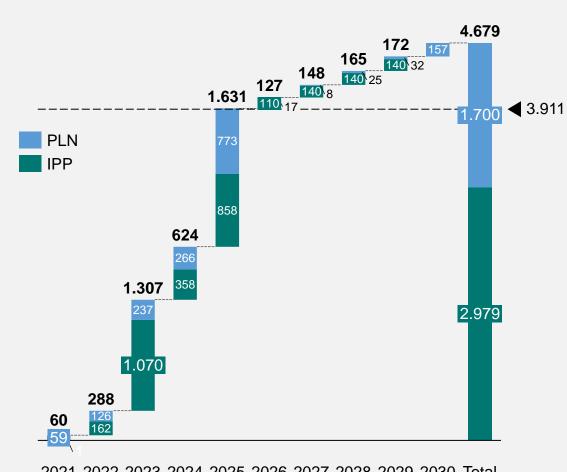
Additional capacity from NRE will reach 20,9 GW in 2030 based on RUPTL

NRE power plants will dominate the addition of generating capacity with a total energy mix of 24.8% in 2030

Notes:

Energy Mix from NRE 24.8% in 2030

^{*)} Existing contract, construction stage



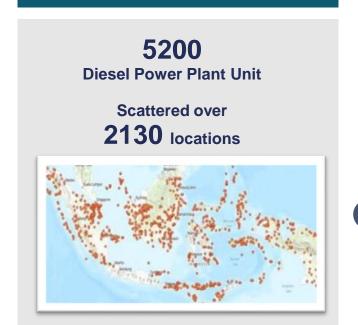
Solar Power Additional Capacity will reach 4.7 GW in 2030 based on RUPTL

Additional Capacity Plan for Solar Power (MW)

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 Total

Source: RUPTL 2021 -2030

Solar Power Quota based on RUPTL


- Additional capacity plan of solar power until 2030 is 4.7 GW. However, to reach to reach 23% NRE energy mix in 2025, PLN needs to operate 3.9 GW Solar Power in 2025.
- The Solar Power development plan in PLN is carried out by developing usual land based Solar power on grid, utilizing on ex-mining area, floating solar power, and hybrid solar power in remote area.
- The additional capacity of 4.7 GW is already included (±1 GW) Solar Power Plan from diesel power conversion to NRE.
- One of the PLTS under construction is 145 MWp Cirata Floating PV and the development of 25 MWp West Bali and 25 MWp East Bali.

De-dieselization: Reduce CO2 emissions and improve NRE energy mix

PLN's Diesel Power Plant

Fuel Consumption in 2020 **Fuel Consumption**

~ 2.7 Million kL

Biaya BBM

~16 Trillion IDR

Based on RUPTL 2021-2030

Diesel Power Plant Conversion Program (De-dieselization)

1. Diesel to NRE

499 MW

Diesel conversion to NRE → Solar Power + BESS + Hybrid Diesel Engine

Phase I

Diesel conversion
~ 212 MW
di ±183 location

Hybrid Scheme Solar + Battery + existing Diesel

Benefits:

Fuel consumption reduction

7 Thousand kL

CO2 emission reduction

.3 Million ton

• NRE Energy mix improvement

0.15%

Phase II

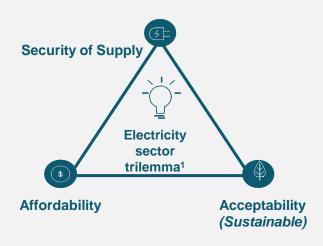
~287 MW
(using available NRE potential nearby)

2. Diesel to Gas

304 MW

Diesel conversion to Gas Power Plant / Gas Engine (gasification)

3. Diesel to Grid


1070 MW

Diesel conversion from isolated system to grid interconnection

Several consideration in the development of Solar PV

Supply & Demand

The development of solar power plants or other power plants in general, needs to consider the alignment of supply and demand, economic feasibility, reliability, energy security and sustainability

Local Content / TKDN

The development of solar PV in Indonesia needs to be supported by technological transfer and domestic industry readiness.

Government regulation (Permenperind No.05/M-IND/PER/2/2017) related to local content stated that the local content of PV modules is **60%** starting on 2022

Technology, Tariff & Funding

- Rapid advances in PV module and battery technology has an impact on the project's economy.
- Innovation in technology drives more competitive prices. Hence it is necessary to establish a fair electricity tariff based on business to business.
- Competitive and adaptive funding is necessary to adjust Indonesian regulations.

